Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ.
نویسندگان
چکیده
It is critical for cells to maintain a homeostatic balance of water and electrolytes because disturbances can disrupt cellular function, which can lead to profound effects on the physiology of an organism. Dehydration can be classified as either intra- or extracellular, and different mechanisms have developed to restore homeostasis in response to each. Whereas the renin-angiotensin system (RAS) is important for restoring homeostasis after dehydration, the pathways mediating the responses to intra- and extracellular dehydration may differ. Thirst responses mediated through the angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptors (AT2R) respond to extracellular dehydration and intracellular dehydration, respectively. Intracellular signaling factors, such as protein kinase C (PKC), reactive oxygen species (ROS), and the mitogen-activated protein (MAP) kinase pathway, mediate the effects of central angiotensin II (ANG II). Experimental evidence also demonstrates the importance of the subfornical organ (SFO) in mediating some of the fluid intake effects of central ANG II. The purpose of this review is to highlight the importance of the SFO in mediating fluid intake responses to dehydration and ANG II.
منابع مشابه
CALL FOR PAPERS Central Control of Fluid and Electrolyte Homeostasis Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake
Coble JP, Cassell MD, Davis DR, Grobe JL, Sigmund CD. Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake. Am J Physiol Regul Integr Comp Physiol 307: R376–R386, 2014. First published June 25, 2014; doi:10.1152/ajpregu.00216.2014.—Increased activity of the renin-angiotensin system within the brain elevates fluid intake, blood pr...
متن کاملActivation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake.
Increased activity of the renin-angiotensin system within the brain elevates fluid intake, blood pressure, and resting metabolic rate. Renin and angiotensinogen are coexpressed within the same cells of the subfornical organ, and the production and action of ANG II through the ANG II type 1 receptor in the subfornical organ (SFO) are necessary for fluid intake due to increased activity of the br...
متن کاملAngiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin II-mediated pressor and drinking responses and is associated with angiotensin II type 1 receptor downregulation.
We recently reported the presence of angiotensin-converting enzyme (ACE)2 in brain regions controlling cardiovascular function; however, the role of ACE2 in blood pressure regulation remains unclear because of the lack of specific tools to investigate its function. We hypothesized that ACE2 could play a pivotal role in the central regulation of cardiovascular function by regulating other renin-...
متن کاملBrain Angiotensin Genetic Silencing of Nox2 and Nox4 Reveals Differential Roles of These NADPH Oxidase Homologues in the Vasopressor and Dipsogenic Effects of Brain Angiotensin II
The renin-angiotensin system exerts a tremendous influence over fluid balance and arterial pressure. Angiotensin II (Ang-II), the effector peptide of the renin-angiotensin system, acts in the central nervous system to regulate neurohumoral outflow and thirst. Dysregulation of Ang-II signaling in the central nervous system is implicated in cardiovascular diseases; however, the mechanisms remain ...
متن کاملGenetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin II.
The renin-angiotensin system exerts a tremendous influence over fluid balance and arterial pressure. Angiotensin II (Ang-II), the effector peptide of the renin-angiotensin system, acts in the central nervous system to regulate neurohumoral outflow and thirst. Dysregulation of Ang-II signaling in the central nervous system is implicated in cardiovascular diseases; however, the mechanisms remain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 308 4 شماره
صفحات -
تاریخ انتشار 2015